Digital Servo Ring Terminator US-3020SRT U.S. Patent Pending The World's First Servo Ultrasonic

Ring Terminal Welder

TECH-SONIC has been providing Multi-National support for over two decades

Specifications

Frequency 20 kHz nominal

- Ultrasonic Power 3.0 kW max Power Supply 220-Output 240 VAC single phase; 20 Amp max; Nema 6-20r outlet
 - **Pneumatic** 6.5 bars / 94 psi; Air Filter built-**Pressure** in; requires 6mm OD Hose
 - Weld Force ~3,000 Newton maximum
 - Weldhead 113 kg / 40.6 x 76.2 x 58.4 cm 250 lb / 16 x 30 x 23 inches
 - Controller 41 kg / 22.9W x 61D x 50.8H cm Cabinet 90 lb / 9W x 24D x 20H inches
 - Visual Display 17 inch LCD display and mouse Additional Wire Cutter Options Barcode Scanner

Welding Capabilities

Cross Section Area Up to 28mm² Heavy Duty Upgrade Over 60mm² Cu Over 95mm² Al Wire Type Copper (Cu) Aluminum (Al)

ULTRASONIC METAL WELDING

TFCH-S

Dynamic Force and Amplitude Control[™] with Multi-Step Welding

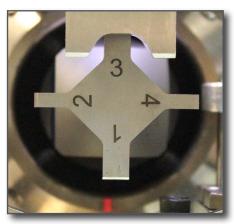
- Ability to adjust force and amplitude during the weld cycle to optimize parameters for each specific wire application
- Capability of over 20 weld steps with unique force and amplitude parameters while energy and frequency remain constant

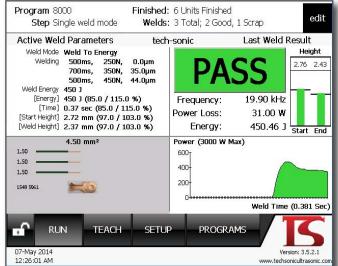
Industry Leading Missing Wire Detection Under 3% CSA

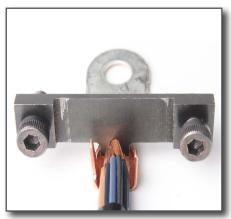
- Capable of detecting a single missing wire at 0.35mm²
- Retracted wire from weld area detection, or added insulation into the weld area within 3% total CSA

Load Cell Force Feedback

- Single micron resolution
- Consistent measurement and ultrasonic output produce high cPk values
- Measurement of pre-weld and post-weld height
- Cross section area measurement and calculation for additional quality control


Network Compatible


- Logs weld height, weld energy, & weld time
- Saves last 20,000 welds; export via USB or TCP/IP



Special Features

- RIGHT: Four-sided horn
- BOTTOM: Wire strand gatherer (Patent Pending)
- BOTTOM RIGHT: Interchangable terminal nests for specific welding applications

This picture shows the "run" mode weld screen featuring Multi-step welding, real time weld data, and an accurate diagram of current wireto-terminal configuration providing the user full transparency of the welding process.

TECH-SONIC offers comprehensive multi-national support and service!

United States, Headquarters

Columbus, Ohio info@techsonicultrasonic.com

China (Shenzhen)

Nanshan, Shenzhen, Guangdong tsc@techsonic.com.cn

Mexico

Ciudad Juarez, Chihuahua rosendo@techsonicultrasonic.com

Thailand

Bang Na, Bangkok atthapol.c@techsonicultrasonic.com Philippines

Basak, Lapu-Lapu City dante.d@techsonicultrasonic.com

China (Suzhou)

Industrial Park, Suzhou tsc@techsonic.com.cn

Germany

Obertshausen, Germany k.bauer@techsonicultrasonic.com

India

Janakpuri, New Delhi sushant@techsonicultrasonic.com Website www.tech-sonic.us

Address 2710 Sawbury Blvd. Columbus, OH 43235 USA

Phone +1-614-792-3117

Email info@techsonicultrasonic.com

Servo vs. Pneumatic Ultrasonic Wire Terminator Comparison

TECH-SONIC US-3020SRT Digital Servo Wire Termination Machine

- > 3.0 kW power supply, 20 kHz frequency
- Max welding 28mm² copper wire to terminal
- ➢ 3,000 Newton max clamping force
- > 220 V power supply

Servo Features

- Servo motor with belt drive to control weld head motion
- > Dynamic Force and Amplitude Control[™] with Multi-Step Welding
 - > 20+ possible weld steps
 - > Uses optimum welding parameters by changing force and amplitude during weld cycle
- > 3% missing volume of CSA detection capability
 - Single missing 0.35mm² wire detection
- > Fast cycle times as product of pre-weld home position at lower level than full open position
- Cost savings over time in comparison to pneumatic units (see attached Doc. # A10011)
- > Increased weld consistency and higher Cpk values with precision control of servo
- > Soft touch landing on weld materials creating less stress on wire strands
- Automatic height calibration
- Meets all requirements of USCAR-38

Pneumatic Features

- Pneumatic cylinders control weld head motion
- > Fixed weld force and amplitude and only single step welding
 - > Not able to change force and amplitude during welding
- > Can not detect single missing 0.35mm² wires in common wire bundles
- > Weld head must return to full open position each weld cycle extending cycle times
- > Inconsistent welding due to inconsistency of air supply, contamination, moisture, etc.
 - Frequent weld failures as a result
- > Aggressive landing controlled by pneumatic cylinder
- > Pin gauge height calibration, can lead to user errors and faulty calibration

TECH-SONIC US-3020SRT Servo Spot Welder Video Links

YouTube

US-3020SRT Servo Ring Terminator Demo

US-3020SRT Missing Wire Detection Demo

Vzaar (International Safe Link)

US-3020SRT Servo Ring Terminator Demo (Alt)

US-3020SRT Missing Wire Detection Demo (Alt)

TECH-SONIC Introduces World's First Digital Servo Ultrasonic Wire Termination Machine

The new line of TECH-SONIC servo-controlled ultrasonic metal welders combines the precision of servo control with the proven strength of ultrasonic welding to produce the most significant advance in ultrasonic welding technology in the last 20 years. Ultrasonic metal welding technology uses a welding horn to direct high frequency ultrasonic vibratory energy to the material surfaces between the metals being welded. The vibratory energy disperses the contamination and oxidation from the work pieces, creating a strong metallurgical bond. No materials are melted, no flux or fillers are introduced, and no substrate degradation occurs, making the welding process not only very strong, but also energy efficient and environmentally friendly.

TECH-SONIC's patent-pending servo-controlled ultrasonic wire termination machine, model US-3020SRT, provides a whole new ultrasonic metal welding capability beyond conventional ultrasonic metal welds. It provides precise, reliable, and repeatable welds for small and delicate parts without damage. It produces single point ground terminals and it can accommodate a variety of terminals by changing terminal nest hardware. It uses a microprocessor-controlled ultrasonic welder and servo-controlled spot welding hardware that can weld multiple wires onto a single terminal and provide a stress free joint.

Combining servo control and load cell feedback technology, the US-3020SRT is a 100% digitally controllable process as opposed to less accurate analog processes. It features Dynamic Force and Amplitude Control[™] through multistep welding with real force monitoring during welding, meaning it can vary the ultrasonic amplitude and applied force during the weld process to produce optimum weld conditions. This allows it the capability to weld delicate parts without cracking or damage occurring and reducing the overall stress applied to wires and parts.

The US-3020SRT also features industry-leading missing wire and strand detection. A typical pneumatic termination machine can only detect missing wires if they are greater than 5% of the total cross section of wires. The US-3020SRT can detect missing wires less than 3% of the total cross section, and single 0.35mm² wires, the smallest wires used in automotive wire bundles which are commonly retracted from the weld area without the user's awareness. The US-3020SRT has proven capable of detecting retracted wires as well. Many automobile manufacturers require the wire harness producers to detect less than 3% of missing wires and have determined that the limitations of the pneumatic process prevent them from providing consistently acceptable part quality.

The US-3020SRT provides ring termination solutions for cross sections from 0.50mm² to 28mm² using the same set of tooling. Many pneumatic welders require larger, bulkier tooling and higher ultrasonic power (over 5 kW) to overcome energy losses. The additional power causes excess stress on the tooling resulting in a shorter life cycle. The US-3020SRT uses a 3 kW generator and can extend the life cycle of tooling with precise control of weld parameters.

The US-3020SRT provides ample storage of user-defined wire termination combinations, each having its own set of weld parameters, available by screen selection or barcode scanner input. It is based on the reliable Windows CE operating system and can provide a TCP/IP interface for transfer of production information to a host system, where it can be saved and analyzed.

Advantages of Digital Servo-Controlled Ultrasonic Metal Welders to Traditional Pneumatic Ultrasonic Welders

Overview

Ultrasonic metal welding is one of many processes used for bonding metals including resistance welding, soldering, and laser welding. Although ultrasonic metal welding can be utilized to join many different materials, it is best suited for the welding of nonferrous metals. Ultrasonic metal welding technology is prominent in key manufacturing sectors such as electric vehicles, lithium batteries, automotive wire harness, solar cells, power electronics, and many others. Weld applications in these industries could benefit considerably from innovative servo-controlled ultrasonic welding technology, which offers much greater precision during welding than the pneumatic driven systems.

TECH-SONIC's innovative servo controlled ultrasonic metal welder, patent pending, is the first and only one of its kind on the market today. TECH-SONIC has pioneered the development of servo controlled ultrasonic metal welders to meet market expectations for critical applications that require extreme precision and quality control. TECH-SONIC's servo-controlled ultrasonic metal welders provide more consistent and repeatable welding than current pneumatic welding systems and boast the ability to set extremely tight quality windows for monitoring important weld parameters such as energy, time, weld height, weld width, and weld force. TECH-SONIC has engineered novel ultrasonic, servo, and load cell feedback processes that provide ultimate digital control throughout the welding process.

Additionally, TECH-SONIC's servo welders include user friendly ergonomic features, advanced graphical user interface, more accurate process control capabilities, and advanced quality control monitoring capabilities compared with pneumatic welders. Due to the enhanced features, servo driven precision control, and innovative feedback processes, TECH-SONIC's new servo ultrasonic metal welders are well positioned to satisfy the growing demand for smarter ultrasonic metal welding technologies.

Ultrasonic Metal Welding Design and Process

Ultrasonic welding has been widely used in joining plastics for many years and is therefore a well characterized process. Conversely, ultrasonic metal welding has not been as widely adopted and hence, is not as largely understood in the industry. With the growing need for welding nonferrous metals such as copper, aluminum, nickel, and others, ultrasonic metal welding has been recognized for its unique capability by the industry.

Ultrasonic metal welders are compact, easy to incorporate into automation, and economical. They produce high quality welds with short cycle times. Ultrasonic metal welder's hardware consists of an ultrasonic generator, a transducer, a booster, and a welding horn. The process of ultrasonic metal welding depends on controlling the transfer of ultrasonic energy into the weld and two welding parameters that must be controlled to achieve a good result: power (amplitude) and force (pressure).

The power is precisely controlled by the generator and determines the horn's vibration amplitude. The force applied to the weld determines how well the power is transferred into the weld. The generator converts standard line power into a high-frequency, high-voltage sine wave, which is sent to the transducer. The transducer converts the electrical energy into a high frequency compression wave, which is then modified by the booster and passed through the horn into the part(s) to be welded.

The horn has a knurled or waved surface to grip the parts to be welded. In combination with the horn, there is a stationary anvil. The material to be welded is positioned between the horn and anvil while the force presses the horn into the materials. The ultrasonic motion of the horn and the friction coefficient of the material causes a

scrubbing action between the various members to be welded. This friction softens the materials under contact. There is a metallurgical diffusion between the parts being welded and a bond is formed. There is no melting of the materials. The welding occurs in a solid state which allows welding of different nonferrous metals.

Advancement of Servo Technology

In the early 1980s, ultrasonic plastic welding showed a significant effect on the weld strength when optimum welding forces were applied. Research has suggested that dynamic force can produce greater weld strength when properly applied for both plastic and metal welding purposes. Force profiling, or adjusting the weld pressure during the weld cycle, has been shown to maximize weld strength while simultaneously decreasing weld cycle time. The development and implementation of servo-controlled ultrasonic metal welding technology is an important step in precisely controlling all welding parameters and providing superior digital process control, the greatest advantage of servo-controlled ultrasonic metal welders.

Force (pressure) in pneumatic ultrasonic metal welders cannot be controlled with the precision and speed achieved by servo force control, which causes excessive deviation in terms of welding quality. With servo-controlled ultrasonic metal welders, the force (pressure) is measured, monitored, and controlled by using a combination of servo motor and load cell feedback. Multi-step welding, where force is applied before the weld energy is introduced in a compression stage, before automatically moving into the welding stage makes it capable of Dynamic Force Control[™]. Ultrasonic amplitude (power) can also be varied during the weld process, providing additional energy according to the parameters. Servo control also provides for rapid part placement and withdrawal, resulting in shorter cycle times than conventional pneumatic ultrasonic metal welding can achieve.

Advantages of Servo Technology

While the greatest advantage of servo-controlled ultrasonic metal welding is Dynamic Force Control[™] and the ability to precisely control all welding parameters throughout the weld process with multi-step welding, there are several other advantages which cannot be achieved using traditional pneumatic ultrasonic welders.

One such advantage is the increased life cycle of the replaceable tooling parts. Whereas pneumatic ultrasonic welders will often introduce more force and power than needed, thus overworking the tooling, servo-controlled ultrasonic welders only introduce as much force and power that is needed for each weld. This leads to much longer tooling life cycles as the horn and anvil are not transferring more energy than needed. They also boast the ability to weld wider ranges of material sizes, which is crucial in eliminating downtime in a production setting and allows the user to quickly change back and forth between wire sizes.

Being 100% digital, servo-controlled ultrasonic welders also simplify the calibration process by removing pneumatic components. Validating the ultrasonic metal welding process becomes easier and more reliable than ever through the automatic process which requires no manual adjustment. The removal of pneumatic components also saves money that would normally be spent on compressed air.

Additionally, servo-controlled ultrasonic metal welders have a feature with the capability to change the way several industries set their production standards: missing strand and missing leaf detection.

Missing Strand/Foil Detection

TECH-SONIC's servo-controlled ultrasonic metal welders have one micron resolution of linear encoder built into the servo. Due to height measurement compensated by the force measurement, the precise servo control using force feedback provides an improved capability to detect missing wire strands and copper foils. The new US-3020WS2 ultrasonic wire splicer and US-3020SRT ring termination machine can detect single missing wire strands, even on wires with cross sections as small as 0.13mm², and below three percent (3%) of the total weld cross section.

Conversely, pneumatic ultrasonic wire splicers and ring termination machines can only detect missing strands if they are greater than five percent (5%) of the total cross section.

Currently, many automobile manufacturers require wire harness producers to detect missing strands within three percent (3%) of the total cross section. The importance of this lies in the fact that during the stripping of wire insulation, strands will sometimes be cut unintentionally by the stripping machines without the user's awareness. Fewer strands in the wire lowers the conductivity of the wire, which at a certain point can become problematic for automobile manufacturers. The ability to detect below three percent (3%) of the total cross section of wires will give automobile manufacturers increased confidence in their electrical wiring and their overall production process.

Additionally, the new US-3020S servo-controlled spot welder, using the same force feedback, has the capability to detect single missing copper or aluminum foils which are base materials as anode and cathode in lithium battery designs. With individual thicknesses of ten microns, the US-3020S has been tested to detect one missing or one additional foil in a stack of sixty (60). Typical pneumatic welders do not have this missing foil technology, so the introduction of the servo technology can improve confidence in the production process for battery manufacturers.

TECH-SONIC servo-controlled ultrasonic metal welders are programmable to hold thousands of weld recipes. The user can set their desired parameters and if the servo force feedback detects materials outside those parameters in the compression stage of multi-step welding, it will signal the error to the user and stop the operation before the welding process occurs.

Conclusion

With the integration of servo technology in the ultrasonic metal welding process, TECH-SONIC has proven the ability to achieve significant improvements in many key areas of wire splicing, ring termination and spot welding. Dynamic Force Control[™] and multi-step welding not only allow for the digital monitoring and adjustment of all weld parameters during the weld process, but also boast the industry's best three percent (3%) missing strand, wire, and foil detection. Servo technology allows for the welding of a wider range of material sizes than are currently possible with pneumatic ultrasonic welders and helps to reduce costs and production downtime. These factors will help to provide reliable solutions across many industries that surpass the standards currently being met by the previous generation of ultrasonic metal welders.

TECH-SONIC, Inc. is headquartered in Columbus, Ohio, USA with subsidiaries in China, and sales and service offices in Mexico, Germany, India, Thailand and the Philippines. It has been designing and manufacturing high-tech ultrasonic metal welders since 1996. In recent years, the company has devoted its research and development to servo controlled ultrasonic metal welding – the "Holy Grail" of ultrasonic metal welding. As a pioneer in servo ultrasonic metal welding technology, it integrates the latest electronics, hardware, location and force sensors, and control software in new and unique ways.

TECH-SONIC has been serving global companies in electrical, automotive, EV, battery, wire harness, appliance, HVAC, solar, and military industries throughout the world, and its engineers have many years of experience in custom welding systems. The company specializes in designing its automated systems for the customers who seek high productivity, precision welding, and improved yields. To demonstrate that TECH-SONIC equipment can meet your welding needs and assembly specifications, the company provides free welding sample testing. For more information and to apply for free sample testing, please visit our website www.tech-sonic.us. For immediate assistance, call Frank Myers in marketing and sales at +1-614-792-3117 or email frank.m@techsonicultrasonic.com.

Wire Termination Testing Report

Model: US-3020SRT Servo Ultrasonic Ring Termination

Wire Termination Analysis of Consistency and Detection of Weld Failures

Testing performed by TECH-SONIC, Inc. USA Compiled: January 31, 2018 Testing Completed: November 2017 – January 2018

> www.tech-sonic.us info@techsonicultrasonic.com +1-614-792-3117 2710 Sawbury Blvd. Columbus, OH 43235, USA

Introduction

The purpose of this research is to test TECH-SONIC's US-3020SRT digital servo-controlled ring terminator's ability to detect wire bundle defects. Defects included in this research are missing strands, and retracted wires. These defects can occur during stripping of the wire, wire placement, and overall operator error. If defects such as these go undetected, it can result in electrical failure within the system due to high resistance and low tensile strength. Detection of these defects using standard pneumatic-controlled ring termination machines is relatively difficult because of the need to set windows where non-defected welds end up being discarded at a high rate. The US-3020SRT's ability to detect defects is being tested along with the capability of being able to prevent non-defective welds from being discarded.

Testing Procedure

The welds were performed on TECH-SONIC's US-3020SRT servo ring termination machine. Wire bundle cross section areas that were tested are: 5.20mm², 5.35mm², 5.95mm², 6.10mm², 6.40mm², 7.90mm², 9.05mm², 9.20mm², 10.60mm², and 16.60mm². Details of each bundle configuration are outlined in the table below. All sample bundles were tested first without any defects in trials of six. The second set of trials had defects and were also tested in trials of six. Defects included missing strands and missing 0.35mm² wire(s). Welding parameters and tolerance windows were unique depending on the cross-section area of the bundle. End height tolerance windows were turned on so welds could be rejected upon detection of a missing strand or wire. Weld steps, weld time, force, amplitude, energy, start height, end height, and triggered alarms were recorded for all trials. Following detection testing, a process capability study was performed on each bundle configuration using minimum (100 samples), nominal (30 samples), and maximum (100 samples) weld parameters. CPK values were calculated from the pull tests; further details are outlined in the data section of this report.

Wire Bundle CSA	Wire Bundle Configuration
5.20mm²	2 (0.35mm²) x 6 (0.50mm²) x 2 (0.75mm²)
5.35mm²	1 (0.35mm²) x 2 (0.5mm²) x 1 (1.50mm²) x 1 (2.50mm²)
5.95mm²	2 x (0.35mm²) x 6 (0.50mm²) x 3 (0.75mm²)
6.10mm²	1 (0.35mm²) x 2 (0.5mm²) x 1 (0.75mm²) x 1 (1.50mm²) x 1 (2.50mm²)
6.40mm²	4 (0.35mm²) x 1 (0.50mm²) x 2 (0.75mm²) x 3 (1.00mm²)
7.90mm²	4 (0.35mm²) x 1 (0.50mm²) x 4 (0.75mm²) x 3 (1.00mm²)
9.05mm²	3 (0.35mm²) x 2 (0.50mm²) x 1 (1.00mm²) x 1 (6.00mm²)
9.20mm²	2 (0.35mm²) x 6 (0.50mm²) x 2 (.075mm²) x 1 (4.00mm²)
10.60mm ²	6 (0.35mm²) x 3 (0.50mm²) x 1 (1.00mm²) x 1 (6.00mm²)
16.60mm²	6 (0.35mm²) x 3 (0.50mm²) x 1 (1.00mm²) x 2 (6.00mm²)

No Defects

The no defects group was the control group for this experiment. It represented terminal ring welds without defect, meaning they had no missing strands or wires. A Process Capability Study was completed, welds were pull tested from the smallest wire furthest from the horn located on the bottom, and by the largest wire closest to the horn located on the top of the bundle. Pull tests were done using on all samples tested under minimum, nominal, and maximum weld parameters. The CPK value was calculated for the pull test among other results outlined in the data section of this report.

Missing Strands

Missing strands were tested by removing individual strands from the weld area. To calculate percent missing strands, the percent missing is based on the actual CSA of the wire bundle configuration. The actual CSA is the sum of the individual strands CSA, as opposed to just adding nominal wire CSA to get to nominal weld CSA. The strands were removed from the same wires each trial. Missing strands detection was tested for values around 3%.

Missing Wires

Retracted wires were tested by retracting the smallest wire furthest from the horn located on the bottom of the wire bundle. In this experiment, 5 trials included the retraction of one or more 0.35mm² wires from a bundle. To calculate percent missing CSA, the percent missing was based on the actual CSA of the wire bundle configuration. Missing wire detection was calculated for missing CSA values around 3%.

Results

5.20mm² Combination

Weld Parameters					
Step Time (ms) Force (N) Amp. (μm) Energy (J)					
1	150	300	0	240	
2	300	365	35	240	

	No Defects				
	Start Height (mm)	End Height (mm)	Time	Energy	
Minimum	2.700	2.430	0.293	240.290	
Maximum	2.740	2.480	0.317	240.990	
Average	2.723	2.470	0.304	240.585	
Std. Dev.	0.01633	0.02530	0.00821	0.30072	

5	5 Missing Strands from 0.75mm ² 3.00%					
	Start Height End Height (mm) (mm) Time Energy					
Minimum	2.590	2.320	2.870	240.200		
Maximum	2.670	2.410	0.307	240.990		
Average	2.627	2.370	0.299	240.617		
Std. Dev.	0.02875	0.03464	0.00695	0.33381		

End Height Tolerance %		
102.00%	98.50%	
101.50% 98.00%		

Alarms	
0/6	

Alarms	
6/6	

	Process Capability Study Pull Test						
	Minimum Weld Parameters						
Step	Step Force (N) Time (ms) Amp. (μm) Energy (J) Start Height (mm) End Height (mm) Time (ms)					Time (ms)	
1	300.00	300.00	0.00	230.00	2.93	2.58	0.33
2	350.00	300.00	33.00	230.00	2.95	2.30	0.55

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	90.00	
Maximum	98.00	
Average	93.31	
Std. Dev.	1.7735	
Avg 3xSD	87.9895	
Pull Spec.	55	
Cpk	7.200	

Pull 2	Wire Size (mm)	Position
Largest	0.75	Тор

Pull Value		
Minimum	154.00	
Maximum	176.00	
Average	161.97	
Std. Dev.	5.7057	
Avg 3xSD	144.8530	
Pull Spec.	120	
Cpk	2.452	

	Nominal Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	240.00	2.91	2.53	0.31
2	355.00	300.00	35.00	240.00	2.91	2.55	0.51

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull \	/alue
Minimum	86.00
Maximum	98.00
Average	91.07
Std. Dev.	2.7283
Avg 3xSD	82.8817
Pull Spec.	55
Cpk	4.406

Pull 2	Wire Size (mm)	Position
Largest	0.75	Тор

Pull V	/alue
Minimum	164.00
Maximum	192.00
Average	176.20
Std. Dev.	7.4990
Avg 3xSD	153.7031
Pull Spec.	120
Cpk	2.498

	Maximum Weld Parameters						
Step Force (N) Time (ms) Amp. (μm) Energy (J) Start Height (mm) End Height (mm) Time (ms)						Time (ms)	
1	300.00	300.00	0.00	250.00	2.86	2.47	0.30
2	380.00	500.00	37.00	230.00	2.80	2.47	0.50

Pull 1	Wire Size (mm)	Position	
Smallest	0.35	Bottom	

Pull \	/alue
Minimum	88.00
Maximum	98.00
Average	91.67
Std. Dev.	1.8966
Avg 3xSD	85.9802
Pull Spec.	55
Cpk	6.445

Pull 2	Wire Size (mm)	Position	
Largest	0.75	Тор	

Pull Value			
Minimum	168.00		
Maximum	188.00		
Average	176.47		
Std. Dev.	4.6220		
Avg 3xSD	162.6041		
Pull Spec.	120		
Cpk	4.073		

5.35mm² Combination

Weld Parameters					
Step	Step Time (ms) Force (N) Amp. (µm) Ener				
1	300	300	0	220	
2	500	315	36	330	

No Defects						
	Start Height (mm)	End Height (mm)	Time	Energy		
Minimum	2.780	2.430	0.332	330.170		
Maximum	2.850	2.490	0.360	330.820		
Average	2.814	2.454	0.346	330.490		
Std. Dev.	0.02881	0.02881	0.01108	0.24839		

End Height Tolerance %		
101.5%	99%	
101%	98.5%	
101%	98.5%	

Alarms	
0/6	

3 Missing Strands from 2.5mm ² 2.81%						
	Start Height End Height (mm) (mm)		Time	Energy		
Minimum	2.710	2.110	0.351	330.030		
Maximum	2.810	2.390	0.396	330.420		
Average	2.753	2.297	0.370	321.267		
Std. Dev.	0.03327	0.10652	0.01464	22.01012		

Alarms
6/6

	Process Capability Study Pull Test						
	Minimum Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	230.00	2.93	2.58	0.33
2	350.00	300.00	33.00	230.00	2.95	2.30	0.35

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

90.00

98.00

93.31

1.7735

87.9895

55

7.200

Pull Value

Minimum

Maximum

Average Std. Dev.

Avg. - 3xSD

Pull Spec.

Cpk

	•	•
Р	ull ۱	Value
Minimu	m	15
Maximu	ım	17
Averag	e	16
Std. De	v.	5.7
Avg 3x	SD	144
Pull Spe	ec.	1
Cpk		2.

Pull 2	Wire Size (mm)	Position
Largest	0.75	Тор

154.00

176.00

161.97

5.7057

144.8530

120

2.452

	Nominal Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	240.00	2.91	2.53	0.31
2	355.00	300.00	35.00	240.00	2.91	2.55	0.51

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	86.00	
Maximum	98.00	
Average	91.07	
Std. Dev.	2.7283	
Avg 3xSD	82.8817	
Pull Spec.	55	
Cpk	4.406	

Pull 2	Wire Size (mm)	Position
Largest	0.75	Тор

Pull Value		
Minimum	164.00	
Maximum	192.00	
Average	176.20	
Std. Dev.	7.4990	
Avg 3xSD	153.7031	
Pull Spec.	120	
Cpk	2.498	

Maximum Weld Parameters							
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	250.00	2.86	2.47	0.30
2	380.00	500.00	37.00	250.00	2.80	2.47	0.50

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	88.00	
Maximum	98.00	
Average	91.67	
Std. Dev.	1.8966	
Avg 3xSD	85.9802	
Pull Spec.	55	
Cpk	6.445	

Pull 2	Wire Size (mm)	Position
Largest	0.75	Тор

Pull Value		
Minimum	168.00	
Maximum	188.00	
Average	176.47	
Std. Dev.	4.6220	
Avg 3xSD	162.6041	
Pull Spec.	120	
Cpk	4.073	

٦

5.95mm² Combination

Weld Parameters				
Step	Time (ms)	Force (N)	Amp. (μm)	Energy (J)
1	300	300	0	250
2	300	420	35	

		No Defects		
	Start Height (mm)	End Height (mm)	Time	Energy
Minimum	2.950	2.690	0.315	250.160
Maximum	2.980	2.700	0.344	250.880
Average	2.962	2.690	0.322	250.402
Std. Dev.	0.00983	0.01095	0.01106	0.26619

End Height Tolerance %	
101.50%	99.00%
101.00%	98.50%

Alarms	
0/6	

5 Missing Strands from 0.75mm ² 3.33%					
	Start Height (mm)	End Height (mm)	Time	Energy	
Minimum	2.880	2.570	0.314	250.220	
Maximum	2.930	2.630	0.327	250.850	
Average	2.903	2.602	0.323	250.543	
Std. Dev.	0.02251	0.02401	0.00471	0.28005	

Alarms
6 / 6

Process Capability Study Pull Test							
Minimum Weld Parameters							
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	250.00	3.14	2.76	0.33
2	400.00	300.00	33.00	250.00	5.14	2.70	0.55

Pull 1	Wire Size (mm)	Position	
Smallest	0.35	Bottom	

Pull 2	Wire Size (mm)	Position
Largest	0.75	Тор

Pull Value				
Minimum	89.00			
Maximum	98.00			
Average	93.64			
Std. Dev.	2.0963			
Avg 3xSD	87.3512			
Pull Spec.	55			
Cpk	6.144			

Dull Value					
Pull V	Pull Value				
Minimum 157.00					
Maximum	185.00				
Average	172.64				
Std. Dev.	7.6204				
Avg 3xSD	149.7787				
Pull Spec.	120				
Cpk	2.303				

	Nominal Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	260.00	3.08	2.73	0.32
2	420.00	300.00	35.00	200.00	5.08	2.75	0.52

Pull 1	Wire Size (mm)	Position	
Smallest	0.35	Bottom	

Pull Value				
Minimum	89.00			
Maximum	101.00			
Average	92.97			
Std. Dev.	3.0567			
Avg 3xSD	83.7964			
Pull Spec.	55			
Cpk	4.140			

Pull 2	Wire Size (mm)	Position	
Largest	0.75	Тор	

Pull Value				
Minimum	175.00			
Maximum	191.00			
Average	182.67			
Std. Dev.	4.9919			
Avg 3xSD	167.6908			
Pull Spec.	120			
Cpk	4.185			

Maximum Weld Parameters							
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	270.00	3.10	2.64	0.31
2	440.00	300.00	37.00	270.00	5.10	2.04	0.51

Pull 1	Wire Size (mm)	Position	
Smallest	0.35	Bottom	

Pull Value			
Minimum	85.00		
Maximum	99.00		
Average	92.62		
Std. Dev.	2.8025		
Avg 3xSD	84.2124		
Pull Spec.	55		
Cpk	4.475		

Pull 2	Wire Size (mm)	Position
Largest	0.75	Тор

Pull Value			
Minimum	167.00		
Maximum	193.00		
Average	180.67		
Std. Dev.	5.2629		
Avg 3xSD	164.8813		
Pull Spec.	120		
Cpk	3.843		

6.10mm² Combination

Weld Parameters				
Step	Time (ms)	Force (N)	Amp. (μm)	Energy (J)
1	300	300	0	270
2	345	500	36	370

No Defects				
	Start Height (mm)	End Height (mm)	Time	Energy
Minimum	2.990	2.630	0.402	370.300
Maximum	3.080	2.680	0.433	370.000
Average	3.020	2.663	0.419	370.115
Std. Dev.	0.03162	0.02160	0.01082	0.13172

4 Missing Strands from 2.5mm ² 3.27%				
	Start Height (mm)	End Height (mm)	Time	Energy
Minimum	2.930	2.560	0.405	370.000
Maximum	2.970	2.600	0.427	370.130
Average	2.958	2.580	0.419	370.022
Std. Dev.	0.01472	0.01673	0.00845	0.05307

End Height Tolerance %		
101.5%	99%	
101%	98.5%	

Alarms	
0/6	

Alarms
6/6

	Process Capability Study Pull Test						
	Minimum Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	350.00	3.09	2.69	0.48
2	330.00	500.00	34.00	330.00	5.09	2.09	0.40

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum 80.00		
Maximum	98.00	
Average	89.96	
Std. Dev.	3.1811	
Avg 3xSD	80.4166	
Pull Spec.	55	
Cpk	3.663	

Pull 2	Wire Size (mm)	Position
Largest	2.50	Тор

Pull Value		
Minimum	402.00	
Maximum	470.00	
Average	434.03	
Std. Dev.	19.0520	
Avg 3xSD	376.8740	
Pull Spec.	275	
Cpk	2.782	

	Nominal Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	365.00	3.03	2.63	0.43
2	345.00	500.00	36.00	303.00	5.05	2.05	0.45

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	83.00	
Maximum	96.00	
Average	90.43	
Std. Dev.	2.7251	
Avg 3xSD	82.2579	
Pull Spec.	55	
Cpk	4.334	

Pull 2	Wire Size (mm)	Position
Largest	2.50	Тор

Pull Value		
Minimum	409.00	
Maximum	468.00	
Average	441.17	
Std. Dev.	17.0639	
Avg 3xSD	389.9748	
Pull Spec.	275	
Cpk	3.246	

	Maximum Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	300.00	300.00	0.00	380.00	3.10	2.55	0.42
2	360.00	500.00	38.00	560.00	5.10	2.55	0.42

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	81.00	
Maximum	99.00	
Average	90.59	
Std. Dev.	2.9885	
Avg 3xSD	81.6245	
Pull Spec.	55	
Cpk	3.970	

Pull 2	Wire Size (mm)	Position
Largest	2.50	Тор

Pull Value		
Minimum	404.00	
Maximum	474.00	
Average	436.86	
Std. Dev.	18.1926	
Avg 3xSD	382.2822	
Pull Spec.	275	
Cpk	2.966	

٦

6.40mm² Combination

Weld Parameters						
Step Time (ms) Force (N) Amp. (μm) Energy						
1	300	500	0	210		
2	500	735	38	210		

No Defects							
Start Height End Height (mm) (mm) Time Energy							
Minimum	2.310	2.060	0.169	210.670			
Maximum	2.350	2.090	0.183	211.750			
Average	2.330	2.075	0.173	211.135			
Std. Dev.	0.01897	0.01049	0.00506	0.39389			

End Height Tolerance %		
102.50%	98.00%	
102.00%	97.50%	

Alarms	
0/6	

5 Missing Strands from 1.00mm ² 4.10%							
	Start Height (mm)	End Height (mm)	Time	Energy			
Minimum	2.230	2.000	0.170	210.400			
Maximum	2.280	2.030	0.176	211.660			
Average	2.253	2.013	0.173	210.983			
Std. Dev.	0.01633	0.01033	0.00259	0.61171			

Alarms
6/6

Process Capability Study Pull Test							
	Minimum Weld Parameters						
Step Force (N) Time (ms) Amp. (μm) Energy (J) Start Height (mm) End Height (mm)							Time (ms)
1	500.00	300.00	0.00	200.00	2.31	2.06	0.18
2	700.00	500.00	36.00	200.00	2.51	2.00	0.10

Pull 1	Wire Size (mm)	Position	
Smallest	0.35	Bottom	

Pull 2	Wire Size (mm)	Position
Largest	1.00	Тор

Pull Value				
Minimum	87.00			
Maximum	97.00			
Average	91.57			
Std. Dev.	2.3667			
Avg 3xSD	84.4700			
Pull Spec.	55			
Cpk	5.151			

Pull V	Pull Value				
Minimum	201.00				
Maximum	218.00				
Average	207.75				
Std. Dev.	4.3167				
Avg 3xSD	194.7999				
Pull Spec.	170				
Cpk	2.915				

	Nominal Weld Parameters							
Step Force (N) Time (ms) Amp. (μm) Energy (J) Start Height (mm) End Height (mm)						Time (ms)		
1	500.00	300.00	0.00	210.00	2.34	2.07	0.16	
2	700.00	500.00	38.00	210.00	2.54	2.07	0.10	

Pull 1	Wire Size (mm)	Position	
Smallest	0.35	Bottom	

Pull Value				
Minimum	86.00			
Maximum	102.00			
Average	90.43			
Std. Dev.	2.8969			
Avg 3xSD	81.7427			
Pull Spec.	55			
Cpk	4.077			

Pull 2	Wire Size (mm)	Position
Largest	1.00	Тор

Pull Value				
Minimum	200.00			
Maximum	218.00			
Average	209.50			
Std. Dev.	5.7521			
Avg 3xSD	192.2438			
Pull Spec.	170			
Cpk	2.289			

Maximum Weld Parameters							
Step Force (N) Time (ms)		Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)	
1	500.00	300.00	0.00	220.00	2.33	2.04	0.16
2	770.00	500.00	40.00	220.00	2.33	2.04	0.10

Pull 1	Wire Size (mm)	
Smallest	0.35	Bottom

Pull Value				
Minimum	84.00			
Maximum	94.00			
Average	89.14			
Std. Dev.	2.3139			
Avg 3xSD	82.1984			
Pull Spec.	55			
Cpk	4.918			

Pull 2	Wire Size (mm)	Position	
Largest	1.00	Тор	

Pull Value				
Minimum	202.00			
Maximum	222.00			
Average	211.04			
Std. Dev.	4.8105			
Avg 3xSD	196.6088			
Pull Spec.	170			
Cpk	2.844			

7.90mm² Combination

Weld Parameters						
Step	Time (ms)	Force (N)	Amp. (μm)	Energy (J)		
1	150	500	0	240		
2	500	840	38	240		

No Defects						
	Start Height (mm)	Time	Energy			
Minimum	2.650	2.340	0.176	240.300		
Maximum	2.700	2.400	0.181	241.290		
Average	2.670	2.372	0.179	240.840		
Std. Dev.	0.02098	0.02229	0.00172	0.45175		

	1 Missing 0.35mm ² wire 4.14%						
	Start Height End Height (mm) (mm) Time Energy						
Minimum	2.550	2.180	0.176	240.060			
Maximum	2.630	2.300	0.180	241.400			
Average	2.587	2.233	0.178	240.668			
Std. Dev.	Std. Dev. 0.03204 0.04457		0.00163	0.55937			

End Height Tolerance %		
102.00%	98.50%	
101.50%	98.00%	

Alarms	
0/6	

Alarms
6/6

	Process Capability Study Pull Test						
	Minimum Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	300.00	0.00	200.00	2.31	2.06	0.18
2	700.00	500.00	36.00	200.00	2.51	2.00	0.10

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum 88.00		
Maximum	95.00	
Average	90.20	
Std. Dev.	1.2060	
Avg 3xSD 86.5819		
Pull Spec.	55	
Cpk	9.729	

Pull 2	Wire Size (mm)	Position
Largest	1.00	Тор

Pull Value		
Minimum	204.00	
Maximum	218.00	
Average	209.58	
Std. Dev.	2.7384	
Avg 3xSD	201.3649	
Pull Spec.	170	
Cpk	4.818	

	Nominal Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	300.00	0.00	210.00	2.34	2.07	0.16
2	735.00	500.00	38.00	210.00	2.54	2.07	0.10

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	89.00	
Maximum	94.00	
Average	91.03	
Std. Dev.	1.6709	
Avg 3xSD	86.0206	
Pull Spec.	55	
Cpk	7.188	

Pull 2	Wire Size (mm)	Position
Largest	1.00	Тор

Pull Value			
Minimum	207.00		
Maximum	217.00		
Average	211.33		
Std. Dev.	2.9750		
Avg 3xSD	202.4084		
Pull Spec.	170		
Cpk	4.631		

Maximum Weld Parameters							
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	300.00	0.00	220.00	2.33	2.04	0.16
2	770.00	500.00	40.00	220.00	2.33	2.04	0.10

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value			
Minimum	88.00		
Maximum	98.00		
Average	91.10		
Std. Dev.	1.9618		
Avg 3xSD	85.2147		
Pull Spec.	55		
Cpk	6.134		

Pull 2	Wire Size (mm)	Position
Largest	1.00	Тор

Pull Value			
Minimum	205.00		
Maximum	217.00		
Average	210.32		
Std. Dev.	2.6813		
Avg 3xSD	202.2760		
Pull Spec.	170		
Cpk	5.012		

9.05mm² Combination

Weld Parameters					
Step	Time (ms)	Force (N)	Amp. (μm)	Energy (J)	
1	300	500	0	F 2 F	
2	500	470	38	525	

No Defects					
	Start Height (mm)	End Height (mm)	Time	Energy	
Minimum	2.800	2.480	0.369	525.050	
Maximum	2.930	2.530	0.414	525.950	
Average	2.852	2.512	0.389	525.460	
Std. Dev.	0.04535	0.01941	0.01494	0.34188	

End Height Tolerance %		
101.12%	98.81%	
101.29%	97.99%	

Alarms	
0/6	

1 Missing 0.35mm ² wire 3.86%						
	Start Height (mm)	End Height (mm)	Time	Energy		
Minimum	2.780	2.410	0.366	525.040		
Maximum	2.850	2.460	0.391	525.930		
Average	2.815	2.430	0.381	525.513		
Std. Dev.	0.02881	0.02098	0.00948	0.38004		

Alarms	
6/6	
	Ξ

	Process Capability Study Pull Test						
	Minimum Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	300.00	0.00	500.00	2.85	2.50	0.46
2	450.00	500.00	26.00	500.00	2.05	2.50	0.40

Pull 1	Wire Size (mm)	Position	
Smallest	0.35	Bottom	

Pull 2	Wire Size (mm)	Position	
Largest	6.00	Тор	

Pull Value			
Minimum	88.00		
Maximum	93.00		
Average	89.53		
Std. Dev.	1.1760		
Avg 3xSD	86.0021		
Pull Spec.	55		
Cpk	9.788		

Pull Value				
Minimum 1005.00				
Maximum	1189.00			
Average	1084.33			
Std. Dev.	40.1686			
Avg 3xSD	963.8242			
Pull Spec.	435			
Cpk	5.388			

	Nominal Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	300.00	0.00	525.00	2.81	2.49	0.46
2	470.00	500.00	38.00	523.00	2.81	2.49	0.40

Pull 1	Wire Size (mm)	Position	
Smallest	0.35	Bottom	

Pull Value			
Minimum	88.00		
Maximum	93.00		
Average	89.43		
Std. Dev.	0.9353		
Avg 3xSD	86.6276		
Pull Spec.	55		
Cpk	12.272		

Pull 2	Wire Size (mm)	Position
Largest	6.00	Тор

Pull Value			
Minimum	1101.00		
Maximum	1169.00		
Average	1134.37		
Std. Dev.	20.6790		
Avg 3xSD	1072.3298		
Pull Spec.	435		
Cpk	11.273		

Maximum Weld Parameters							
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	300.00	0.00	550.00	2.81	2.46	0.43
2	490.00	500.00	40.00	550.00	2.01	2.40	0.45

Pull 1	Wire Size (mm)	Position	
Smallest	0.35	Bottom	

Pull Value		
Minimum	88.00	
Maximum	92.00	
Average	89.34	
Std. Dev.	0.9663	
Avg 3xSD	86.4411	
Pull Spec.	55	
Cpk	11.846	

Pull 2	Wire Size (mm)	Position
Largest	6.00	Тор

Pull Value		
Minimum	1031.00	
Maximum	1187.00	
Average	1121.17	
Std. Dev.	28.5119	
Avg 3xSD	1035.6342	
Pull Spec.	435	
Cpk	8.022	

9.20mm² Combination

	W	eld Paramet	ers	
Step	Time (ms)	Force (N)	Amp. (μm)	Energy (J)
1	300	500	0	450
2	500	420	38	450

		No Defects		
	Start Height (mm)	End Height (mm)	Time	Energy
Minimum	2.820	2.460	0.336	450.050
Maximum	2.890	2.520	0.365	451.090
Average	2.853	2.502	0.354	450.427
Std. Dev.	0.02582	0.02229	0.01029	0.38790

End Height	Tolerance %
103.00%	98.00%
102.00%	97.00%

Alarms	
0/6	

	1 Missing	0.35mm² wir	e 3.80%	
	Start Height (mm)	End Height (mm)	Time	Energy
Minimum	2.700	2.160	0.341	450.540
Maximum	2.800	2.450	0.387	451.230
Average	2.751	2.356	0.360	450.811
Std. Dev.	0.04357	0.12443	0.02140	0.29181

Alarms
6/6

		Proce	ss Capability	y Study P	ull Test		
		ſ	Vinimum We	eld Paramete	ers		
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	300.00	0.00	450.00	2.86	2.52	0.39
2	400.00	500.00	36.00	450.00	2.80	2.52	0.59

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	82.00	
Maximum	99.00	
Average	89.10	
Std. Dev.	2.2984	
Avg 3xSD	82.2047	
Pull Spec.	55	
Cpk	4.945	

Pull 2	Wire Size (mm)	Position
Largest	4.00	Тор

Pull Value		
Minimum	673.00	
Maximum	874.00	
Average	781.47	
Std. Dev.	50.6023	
Avg 3xSD	629.6630	
Pull Spec.	375	
Cpk	2.678	

	Nominal Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	300.00	0.00	470.00	2.74	2.42	0.36
2	420.00	500.00	38.00	470.00	2.74	2.42	0.50

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	85.00	
Maximum	92.00	
Average	89.17	
Std. Dev.	1.8585	
Avg 3xSD	83.5912	
Pull Spec.	55	
Cpk	6.128	

Pull 2	Wire Size (mm)	Position
Largest	4.00	Тор

Pull Value		
Minimum	647.00	
Maximum	880.00	
Average	755.70	
Std. Dev.	50.9599	
Avg 3xSD	602.8204	
Pull Spec.	375	
Cpk	2.490	

Maximum Weld Parameters							
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	300.00	0.00	490.00	2.74	2.42	0.36
2	440.00	500.00	40.00	490.00	2.74	2.42	0.50

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	81.00	
Maximum	95.00	
Average	87.44	
Std. Dev.	3.0528	
Avg 3xSD	78.2816	
Pull Spec.	55	
Cpk	3.542	

Pull 2	Wire Size (mm)	Position
Largest	4.00	Тор

Pull Value		
Minimum	690.00	
Maximum	883.00	
Average	787.83	
Std. Dev.	49.1604	
Avg 3xSD	640.3487	
Pull Spec.	375	
Cpk	2.799	

10.60mm² Combination

Weld Parameters						
Step Time (ms) Force (N) Amp. (μm) End						
1	150	500	0	FDF		
2	500	1260	38	525		

No Defects							
Start Height End Height Time Ei (mm) (mm)							
Minimum	3.090	2.550	0.356	525.100			
Maximum	3.160	2.640	0.404	525.840			
Average	3.128	2.617	0.385	525.480			
Std. Dev.	0.02317	0.03327	0.01782	0.29523			

End Height Tolerance %			
104.00%	98.00%		
102.00%	96.00%		

Alarms				
0/6				

1 Missing 0.35mm ² wire 3.30%							
	Energy						
Minimum	3.010	2.410	0.363	525.360			
Maximum	3.120	2.540	0.424	525.740			
Average	3.058	2.487	0.393	525.520			
Std. Dev.	0.04070	0.04761	0.02136	0.18254			

Alarms
6/6

Process Capability Study Pull Test							
Minimum Weld Parameters							
Step Force (N) Time (ms) Amp. (μm) Energy (J) Start Height (mm) End Height (mm)							Time (ms)
1	500.00	150.00	0.00	500.00	3.31	2.66	0.34
2	1200.00	500.00	36.00	500.00	5.51	2.00	0.54

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value				
Minimum 86.00				
Maximum	94.00			
Average	89.57			
Std. Dev.	1.5522			
Avg 3xSD	84.9135			
Pull Spec.	55			
Cpk	7.424			

Pull 2	Wire Size (mm)	Position
Largest	6.00	Тор

Pull Value				
Minimum	1090.00			
Maximum	1280.00			
Average	1168.92			
Std. Dev.	46.7045			
Avg 3xSD	1028.8066			
Pull Spec.	435			
Cpk	5.238			

	Nominal Weld Parameters							
Step Force (N) Time (ms) Amp. (μm) Energy (J) Start Height (mm) End Height (mm) Time						Time (ms)		
1	500.00	150.00	0.00	525.00	3.20	2.54	0.33	
2	1260.00	500.00	38.00	525.00	5.20	2.54	0.55	

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value			
Minimum	87.00		
Maximum	96.00		
Average	89.70		
Std. Dev.	1.7449		
Avg 3xSD	84.4652		
Pull Spec.	55		
Cpk	6.629		

Pull 2	Wire Size (mm)	Position
Largest	6.00	Тор

Pull Value			
Minimum	1097.00		
Maximum	1278.00		
Average	1181.80		
Std. Dev.	50.1937		
Avg 3xSD	1031.2189		
Pull Spec.	435		
Cpk	4.959		

Maximum Weld Parameters							
Step Force (N) Time (ms) Amp. (μm) Energ		Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)		
1	500.00	150.00	0.00	F F O OO	3.17	2.49	0.33
2	1320.00	500.00	40.00	550.00	5.17	2.49	0.55

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value			
Minimum	87.00		
Maximum	96.00		
Average	91.38		
Std. Dev.	2.1404		
Avg 3xSD	84.9587		
Pull Spec.	55		
Cpk	5.666		

Pull 2	Wire Size (mm)	Position
Largest	6.00	Тор

Pull Value			
Minimum	1051.00		
Maximum	1268.00		
Average	1159.15		
Std. Dev.	39.0512		
Avg 3xSD	1041.9964		
Pull Spec.	435		
Cpk	6.181		

16.60mm² Combination

Weld Parameters					
Step	Time (ms)	Force (N)	Amp. (μm)	Energy (J)	
1	150	500	0	725	
2	500	1450	40	735	

No Defects				
	Start Height End Height (mm) (mm)		Time	Energy
Minimum	3.930	3.330	0.427	433.860
Maximum	4.010	3.430	0.442	736.000
Average	3.983	3.385	0.433	685.400
Std. Dev.	0.03502	0.04087	0.00534	123.22952

End Height Tolerance %			
104.00%	98.00%		
102.00%	96.00%		

Alarms	
0/6	

	2 Missing 0.35mm ² wires 4.21%				
	Start Height (mm)	End Height (mm)	Time	Energy	
Minimum	3.830	3.200	0.422	735.250	
Maximum	3.870	3.300	0.443	736.230	
Average	3.852	3.253	0.431	735.858	
Std. Dev.	0.01329	0.03204	0.00866	0.37134	

Alarms
6/6
6 / 6

Position

	Process Capability Study Pull Test						
	Minimum Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	150.00	0.00	700.00	4.07	3.32	0.51
2	1400.00	500.00	38.00	700.00	4.07	5.52	0.51

Pull 2

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Largest	6.00	Тор
		1
Pull \	/alue	ļ
Minimum	1007.00	
Maximum	1218.00	
Average	1108.96	
Std Dav	EE 2640	

Wire Size

(mm)

Pull Value		
Minimum	87.00	
Maximum	99.00	
Average	93.27	
Std. Dev.	2.8950	
Avg 3xSD	84.5851	
Pull Spec.	55	
Cpk	4.406	

Pull Value		
1007.00		
1218.00		
Average 1108.96		
55.3649		
Avg 3xSD 942.8653		
435		
4.058		

	Nominal Weld Parameters						
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	150.00	0.00	735.00	4.07	3.28	0.50
2	1450.00	500.00	40.00	733.00	4.07	5.20	0.30

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	87.00	
Maximum	98.00	
Average	92.00	
Std. Dev.	2.4212	
Avg 3xSD	84.7365	
Pull Spec.	55	
Cpk	5.094	

Pull 2	Wire Size (mm)	Position
Largest	6.00	Тор

Pull Value		
Minimum	1047.00	
Maximum	1199.00	
Average	1113.80	
Std. Dev.	38.8821	
Avg 3xSD	997.1536	
Pull Spec.	435	
Cpk	5.819	

Maximum Weld Parameters							
Step	Force (N)	Time (ms)	Amp. (μm)	Energy (J)	Start Height (mm)	End Height (mm)	Time (ms)
1	500.00	150.00	0.00	770.00	4.08	3.24	0.47
2	1500.00	500.00	42.00		4.08	5.24	0.47

Pull 1	Wire Size (mm)	Position
Smallest	0.35	Bottom

Pull Value		
Minimum	88.00	
Maximum 99.00		
Average	93.76	
Std. Dev.	2.4582	
Avg 3xSD	86.3854	
Pull Spec.	55	
Cpk	5.256	

Pull 2	Wire Size (mm)	Position
Largest	6.00	Тор

Pull Value		
Minimum	1027.00	
Maximum	1183.00	
Average	1113.78	
Std. Dev.	30.1014	
Avg 3xSD	1023.4759	
Pull Spec.	435	
Cpk	7.517	

Discussion

The US-3020SRT showed the ability to consistently detect missing strands for all five wire bundle combinations (5.2mm², 5.35mm², 5.95mm², 6.10mm², 6.40mm²) at a range from 2.81% missing CSA to 4.10% missing CSA. The machine performed at 100% reliability, meaning that all welds nearest to 3% missing CSA triggered an alarm and the missing strands were detected. Welds were rejected at end height as the machine was able to detect a smaller CSA than calculated in the taught parameters. Additionally, the control group with no defect achieved 100% reliability without triggering an alarm meaning no welds were falsely rejected. All welds were defected in order to achieve as close to 3% missing CSA as possible.

The machine also showed a successful detection of retracted wires for all five wire bundle combinations (7.90mm², 9.05mm², 9.20mm², 10.60mm², 16.60mm²) at a range from 3.3% missing CSA to 4.21% missing CSA. The smallest wire for each combination was retracted (0.35mm² in all cases except for the 16.60mm² combination where two 0.35mm² wires were retracted), so the machine will be successful in detecting larger wires in each combination retraction at levels less than or equal to the ones tested. The machine performed at 100% reliability, meaning that all retracted wires nearest to 3% missing CSA triggered an alarm and the missing wire was detected. Welds were rejected at end height, meaning that the machine detected a smaller CSA for the bundle than previously taught in teach mode. Additionally, the control groups with no retracted wires achieved 100% reliability without triggering an alarm and no welds were falsely rejected. All welds were defected in order to achieve as close to 3% missing CSA as possible.

Following detection testing, a process capability study was done on each wire bundle combination under three different sets of parameters: minimum, nominal, and maximum. Weld step time remained constant for each set of parameters while force, amplitude, and energy all slightly increased from minimum-nominal-maximum. 100 samples were tested for the minimum and maximum parameters, while 30 samples were tested for the nominal weld parameters. After completion of sample creation, each sample was pull tested two separate times. The first pull test was executed using the smallest wire (0.35mm²) furthest away from the horn located on the bottom of the bundle. The second pull test was done using the largest wire in the combination closest to the horn located on top of the bundle. All pull test values (min, max, and avg.) fall well above the required specification for all 30 sets of capability study parameters ((minimum, nominal, maximum) x (10 separate wire bundle combinations)). Additionally, CPK values were calculated after each pull test, and all 60 of them are greater than the specified value of 2.

The parameters for each wire bundle combination were based on previous testing done with bundles of similar CSA. The first steps force was set relatively high with no amplitude being applied. Previous research showed that using high force with no amplitude initially, allowed for more consistent start heights. It acts to compress the wires and prevent start height fluctuations.

Conclusion

The testing procedure outlined allows for consistent testing of missing strands, and retracted wires in servo ring termination. The US-3020SRT showed the ability to detect +/- 3% missing strands at 100% reliability on wire bundle combinations of 5.2mm², 5.35mm², 5.95mm², 6.10mm², and 6.40mm² with varying amount of total wires. It also showed the ability to detect retracted wires at 100% reliability on wire bundle combinations of 7.90mm², 9.05mm², 10.60mm², and 16.60mm². In addition to detecting these defects, the servo ring termination machine rejected zero welds without defects.

The pull tests CPK values for all of the combinations were above a value of 2.289, exceeding the targeted CPK value of 2.

TECH-SONIC, Inc. 2710 Sawbury Blvd. Columbus, OH 43235 USA www.tech-sonic.us info@techsonicultrasonic.com

Company Representative:

+1-614-792-3117

Frank Myers Sales & Marketing Manager frank.m@techsonicultrasonic.com

Confidentiality Statement: The contents of this document are confidential and are intended solely for addressee. The information may also be legally privileged. This transmission is sent in trust, for the sole purpose of delivery to the intended recipient. If you have received this transmission in error, any use, reproduction or dissemination of this transmission is strictly prohibited. If you are not the intended recipient, please immediately notify the sender by e-mail or phone and destroy this document.